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We present a method for the numerical generation of finite difference grids. In this method, 
a complicated shape is divided into simpler parts, then each part is transformed to a rectangle 
and is individually gridded. It is demonstrated that requiring the transformation function 
defining each subgrid to satisfy a linear fourth order PDE system provides the flexibility 
necessary to smoothly patch together the subgrids. The ability to prescribe mesh point 
locations on subgrid boundaries gives a simple method for controlling the locations of mesh 
points which are interior with respect to the composite grid. 

1. INTRODUCTION 

The numerical generation of curvilinear coordinate systems is a valuable tool for 
formulating finite difference models of physical problems. One often wants to specify 
the number and approximate distribution of mesh points in areas where the solution 
is of particular interest, such as in boundary layers or near singularities. Conse- 
quently, a good deal of work has been done on methods that generate grid systems 
which allow the user to specify mesh point locations on the boundary and, to some 
extent, control their distribution in the interior. 

It is a common practice to transform a region L! in physical space to a simpler 
region R (generally a rectangle) in a computational space. It is then easy to define 
difference equations for the transformed equations on a regular grid in R. The inverse 
of this transformation defines a curvilinear coordinate grid on R. The trick is to 
choose the transformation in such a way that the grid on 0 has certain desirable 
features while maintaining control over the placement of mesh points. For instance, it 
is obvious that grid lines from the same family should not cross. Moreover, since 
abrupt changes in finite difference grid spacing degrades the numerical results, the 
gradation of the spacing should be smooth and grids should not be excessively 
skewed. Additionally, the transformations defining the grids may be time or iteration 
dependent. This allows the coordinate system in the physical plane to deform with a 
surface while computations are done in a fixed computational region R. 

In the last few years, a method has been developed which generates a coordinate 
system in physical space by considering the physical coordinates as solutions of a 
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quasilinear elliptic system with Dirichlet boundary conditions in the transformed 
region R. This approach has been fully and systematically developed by Thompson et 
al. [ 11, who employ a second-order elliptic system. By and large, most such methods 
directly specify grid points on the boundary of R. Indirect control over interior points 
is obtained by adding various forcing terms to the elliptic system [2]. Recent 
contributions to mesh generation techniques using this and. other methods may be 
found in [3]. 

In this paper, we present a variation of the above method which allows the user to 
specify the placement of grid points not only on the boundary of B but also at 
various interior points. Basically, our approach is to construct a grid system on J2 as 
a union of subgrids which are smoothly joined at boundaries. To insure that the 
subgrids fit together smoothly, additional boundary conditions are imposed to specify 
the slopes and spacings of mesh lines at the boundaries of subgrids. Requiring the 
transformation functions to satisfy a fourth-order elliptic system on each subgrid 
allows the specification of these conditions and insures the smoothness of the grid 
lines in the subregion interiors. The use of a higher order elliptic system together with 
finite elements has been examined by Dickson [4]. 

The system of equations which is used to determine the transformation functions 
on a subgrid can be discretized, yielding a linear set of difference equations. Since 
each system is relatively small, there are only modest demands on computer storage 
and the total computational time for the overall grid is quite small. We remark, 
however, that the use of subgrids may result in a more complex data structure than 
would be required when using a single grid in solving a partial differential equation 
on 0. 

Finally, we note that the method presented here extends naturally to three- 
dimensional grid generation [ 51. 

2. ANALYTIC FORMULATION 

In order to construct a grid composed of smaller subgrids, it is necessary to control 
the location of grid points on subgrid boundaries and ensure that the small grids fit 
together smoothly. To ensure that the subgrids fit together, we must specify the slope 
of the grid lines as they intersect the subgrid boundaries and control the grid sizes 
near the boundaries. Failure to control these factors can lead to grids which are 
excessively skewed or which have a nonsmooth variation of mesh spacing (see 
Fig. 1). 

Specification of the coordinate values, slopes, and local mesh spacing requires four 
boundary conditions on the boundary of each subgrid. Attempting to smoothly 
extend the grid lines to the interior of a subgrid using a second-order elliptic system 
would produce an overspecified problem for which there is, in general, no solution. 
To accomodate the extra boundary conditions we will use a fourth-order elliptic 
system to extend the grid lines to the interior. 

Formulating the problem mathematically involves two steps. Following [ 11, we 
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FIG. 1. Undesirable grids. 

first formulate equations describing the transformation from physical space to the 
computational space; then we reverse the role of dependent and ind.ependent 
variables, resulting in equations for the transformation from computational space to 
physical space. We shall consider a < - q computational space R corresponding to a 
subgrid region 0, in an x - y physical space as in Fig. 2. Computational boundaries 
are specified as indicated. 

We now formulate a boundary value problem to determine the transformation 

FIG. 2. 

R 
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The image R in computational 
x 

(<, q) of a subgrid R, in physical space (x3 Y). 
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FIG. 3. Specification of the angle that a line where 9 = const makes with the c = 0 boundary. 

((x, y), r,r(x, y) from 0, to R. The location of grid points on the boundary of .R, 
specifies boundary values for < and II. To specify the slopes of the grid lines at the 
boundaries, we prescribe the angle w the grid line makes with the normal to the 
boundary at each point, and take 0 = tan VI. On a boundary where r = 0, 1, we 
specify the slope of the intersecting q grid line by requiring 

Vrl . (n + @(rl)J = 0, 

where II is the unit outer normal at the boundary and t is the unit tangent in x - y 
space (see Fig. 3). Analogously, on lines where q = 0, 1, we specify that V< be 
orthogonal to n + @(()t. 

There are several possibilities involving first- and second-order derivative 
conditions which can be used to control the grid spacing near subgrid boundaries. 
Numerical experiments indicated that specification of at/&r on r = 0, 1 and &J/C% on 
r,r = 0, 1 are good choices, and our discussion will be limited to this case. Special care 
should be used in specifying these values to ensure consistency of the boundary 
conditions near corners. This issue will be discussed in detail in Section 3. 

We wish our transformation functions to satisfy a system of nonlinear elliptic 
differential equations in the interior of 0,. The differential operator will be denoted L 
and will be determined later. Thus, for a subgrid Q,, the transformation to the 
computational domain R satisfies 

L(=O, 

Lrj=O 

(3 rl given, 

Vq - (n + O(v)t) = 0, 

in R,, (1-l) 

in R,, (1.2) 

on &2,, (2-l) 

on r=O, 1, (2.2) 

x 
an given, on C=O,l, (2.3) 

VY . (n + O(r)t) = 0, on q=O,l, (2.4) 

aa 
an given, on v=O,l. P-5) 
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We are interested in a transformation x(<, q), y(<, a) from computational space to 
physical space, but the formulated equations are for the inverse of the transformation. 
As usual [ 11, the assumed invertibility of the transformation can now be used to 
recast the equations by reversing the role of dependent and independent variables. 
This process is based on the fact that 

a(r,?)= a(& Y) - ’ 
WV Y) L I xii’ 

i.e., 

i ) 
L G’ = l Y, -Xv 
rlx VY Xl y, i -X,Yr -Y, x1 )* 

The boundary conditions corresponding to (2.1~(2.5) become 

x, YY given, on 8R; (3.1) 

/?k OJ=O, on r = 0, < = 1, respectively; (3.2) 

-a/J, given, on <=O, 1; (3.3) 

/?+ OJ=O, on q = 0, r7 = 1, respectively; (3.4) 

-yfJ, given, on v=O,l, (3.5) 

where a*=~:+ yi, /I=x*x,,+ yry,, y*=xj+ y:, and J=xIy,,-x,,y&. We note 
that by using the known data on the boundary of R, the above boundary conditions 
are linear. 

Finally, we shall choose the operator L so that when the roles of the variables are 
switched, L< = 0 and Lg = 0 become the linear equations 

A’x=O, (3.6) 

A*y=O. (3.7) 

It should be noted that there is no maximum principle for this system of equations; 
consequently, it is possible to lose invertibility of the transformation for injudicious 
choices of subgrids. 

3. DISCRETIZATION 

In this section, we shall discuss the numerical solution of the system of equations 
(3.1~(3.7). There are two steps in the development of the numerical procedure. First, 
the differential equations must be discretized; then, the resulting linear finite 
difference equations must be solved. The x and y solution values of the system will 
provide the physical coordinates of the grid points. 
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FIG. 4. Discretized computational space (r, q). 

At each interior point, we apply the standard 13-point discretization of the bihar- 
manic operator to A*x, A*y. Note (see Fig. 4) that the biharmonic approximation at 
points just inside the boundary introduces a point outside the domain. Since there are 
two unknons (x and y) at each point, the outside points have each introduced two 
new unknowns. Thus, if 

N= 1/s<- 1, M= l/Sq - 1, 

we have NM interior points with 2MN unknowns. The discretization of the bihar- 
manic yields 2MN equations; however, it introduces 2(M + N) outside points and 
4(M + N) new unknowns. The discretized boundary conditions will provide the extra 
4(M + N) equations needed to close the system. 

The first step in discretizing the boundary conditions is to specify a</&~ on < = 0, 1 
and @I/C% on v = 0, 1 as required to evaluate (3.3) and (3.5). The case for r = 0 will 
be considered; other boundaries are treated analogously. We first note that the 
location of the grid point at (St, 6~) has already essentially been determined by 
specifying the slopes of the grid lines q = 6~ at < = 0 (Eq. 3.2) and < = S< at q = 0 
(Eq. (3.4)). The value of a</&~ to be specified at r = St, q= 6~ is directly determined 
by using this information. This is done in order to avoid an inconsistency in the 
corner, and is related to requiring that the two second-order mixed partial derivatives 
agree at the corner point. Using a similar analysis, we then determine the value of 
c?~/c%I to be specified at c = 0, q = 1 - 6~. The specified values of a</~% at the 
remaining boundary points along < = 0 are determined by linear interpolation. 

We are now ready to discretize the boundary conditions (3.2~(3.5). Again we will 
consider only r = 0. To approximate (3.2) and (3.3), we need only approximate x,, 
Y xl, y, for q = a~,..., 1 - 6yl. A 2-point centered difference for the tangential 
diiivatives x, and y, was found to be satisfactory. 

Approximation of the normal derivatives xI and y, requires more care. A two-point 
one-sided outward difference decouples the boundary points from the biharmonic and 
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can lead to kinks in the grid lines just inside the boundary. Using only a two-point 
centered difference approximation produces the opposite effect; viz., it fails to insure 
sufficient adherence of the approximate solution to the boundary conditions. A three- 
point inward one-sided difference is also unsuitable; when used throughout, it yields a 
singular system. 

When assembling subgrids, slope specification (3.2) is crucial, whereas some flex- 
ibility in spacing conditions (3.3) does not adversely affect the results. This obser- 
vation suggests using a 3-point one-sided inward difference to evaluate xI and y, in 
(3.2) and a two-point centered difference for (3.3). This combination was found to 
yield good results, and was used for all examples in Section 4. 

The discretized system now contains 2MN linear equations corresponding to 
discretization of (3.6) and (3.7) and 4(M + N) linear equations corresponding to 
discretized boundary conditions. Consequently, for the subgrid Q, in question, we 
have a banded linear system with 2MN + 4(M + N) unknowns and equations, which 
for our ordering of unknowns has a bandwidth of 8N + 17. The solution of this linear 
system comprises the majority of the computational work necessary to generate a 
subgrid. Since the systems are small, Gaussian elimination is fast and consequently is 
used in all of the examples in Section 4: 

For generating subgrids with a large number of points, Gaussian elimination can 
become costly. In that case, the system can be solved iteratively. Since little accuracy 
is needed, the iterative scheme converges adequately in very few steps. Numerical 
solution of the system using iterative methods will be discussed more fully in a 
forthcoming paper covering 3-D grid generation [5]. 

4. RESULTS 

In this section, we present some relatively simple grids generated by the above 
method. These examples show how subgrids can be joined smoothly across boun- 
daries, and also how specification of grid point locations on subgrid boundaries 
which are interior to the composite grid can help control the placement of interior 
grid points. When subgrids are used, the interior subgrid boundaries are shown as 
darkened lines. 

In the lirst example, we consider two approaches for gridding a triangle. In Fig. 5a, 
there is only one subgrid region. Point B is placed on edge AC and A, B, C, and D 
map into the corners of the computational space. The grid slope specifications are 
taken to be linear interpolations between the given corner slopes, except for the grid 
lines nearest point B where an angle of 60” with respect to the normal direction was 
arbitrarily chosen. This grid has the disadvantage that at point B the transformation 
is singular. This leads to difficulties both in forming the grid and using the computed 
grid. (For purposes of generating the grid, the location of line BC was slightly 
perturbed). By contrast, a very different gridding was obtained (Fig. 5b) by 
subdividing the triangle into three quadrilaterals and enforcing normality at the 
subgrid boundaries to join the subgrids smoothly. 
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a 
b 

FIG. 5. Two griddings of a triangle (a) as one grid, (b) as the composite of three subgrids. 

a 
D E F 

C 

FIG. 6. Two griddings for flow over a dent: (a) as one grid, (b) with BE as a subgrid boundary, to 
control grid clustering near point B. 
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A C 

FIG. 7. One gridding of an oddly shaped region as the union of seven subgrids. 

The next example (Fig. 6) shows a region in which we want to compute a flow 
from left to right. We wish to cluster grid points near the bottom boundary ABC and 
to have the grid lines nearly orthogonal to that boundary. In Fig. 6a, no subgridding 
was used and an exponential stretching of grid points along AD and CF was 
specified. We see that without some effort at control, the interior grid points fail to 
cluster closely to the boundary ABC near point B. While some manipulation of the 
spacing conditions (Eqs. (3.3), (3.5)) could improve the clustering, a more simple and 
direct approach is to use subgridding. In Figure 6b we choose BE to be a subgrid 
boundary, and by specifying the grid point locations on BE, we directly control the 
clustering near point B. Smooth joining of the subgrids is again controlled by 
specifying approximate normality. 

Finally, in Fig. 7 we show one method of gridding a more complex shape. This 
example illustrates the flexibility that the user has in his choice of decomposing the 
composite grid into subgrids. Here, we have chosen seven subgrids, the largest of 
which is 8 x 8 (M = N= 6). The computational work to construct such a subgrid 
essentially requires only the solution of a banded linear system with 120 unknowns 
and bandwidth 65. The slope conditions at the outer boundaries were chosen in 
various ways-for example, to enforce approximate normality along ABC. The 
smoothness of joining at subgrid boundaries is apparent. With only very little 
experience using the method, the user can wisely choose a subgrid decomposition and 
thereby effectively control the placement of grid points. 
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